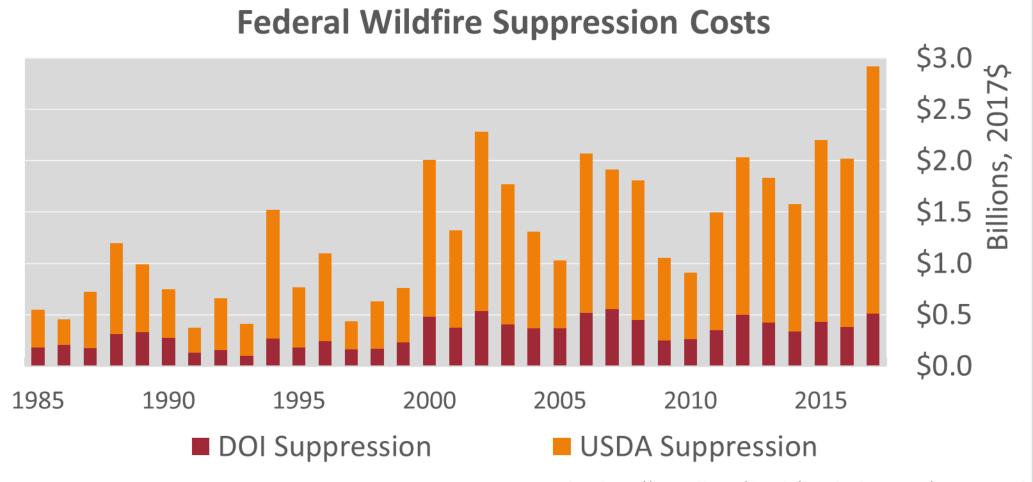


Estimating ecosystem damages from wildfire: Comparison of two valuation methods

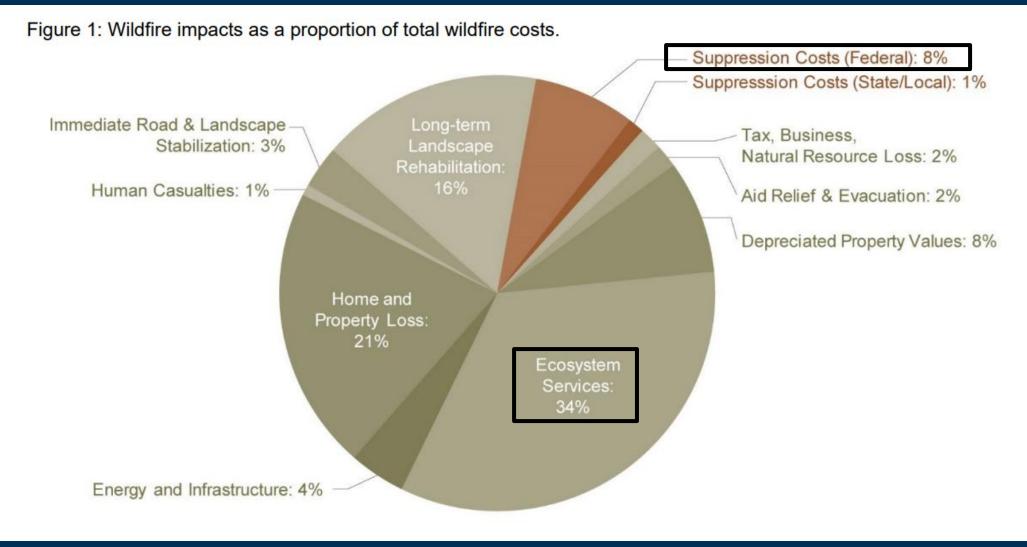

James Meldrum, Research Economist USGS Fort Collins Science Center

ACES 2018 | Washington, DC | December 4, 2018

U.S. Department of the Interior U.S. Geological Survey

This information is preliminary and is subject to revision. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

Wildland fire suppression costs


Data from https://www.nifc.gov/fireInfo/fireInfo_documents/SuppCosts.pdf

(2018 YTD as of 11/29/2018: \$3.2 billion)

Preliminary information - subject to revision. Not for citation or distribution

SGS

Suppression vs total costs

https://headwaterseconomics.org/wp-content/uploads/full-wildfire-costs-report.pdf (May 2018)

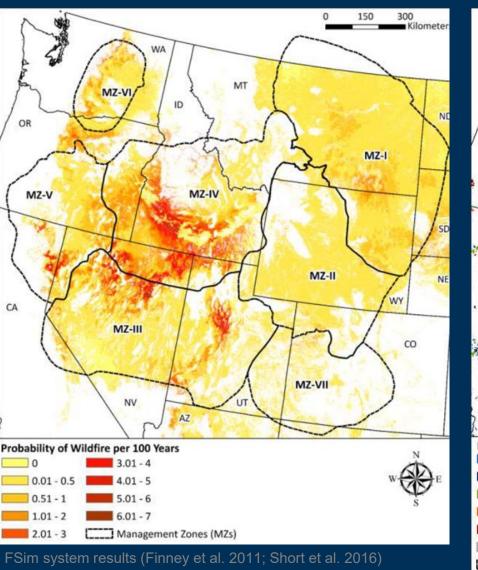
Cost categories (recoverable in trespass cases)

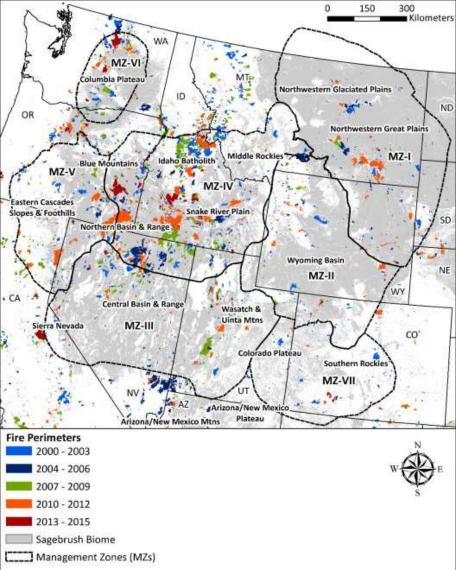
1. Fire suppression costs

2. Resource damages

- 3. Emergency stabilization & rehabilitation costs
- 4. Cost of repairing or replacing physical improvements
- 5. Cost of repairing, replacing, or rehabilitating offsite values
- 6. Direct (administrative) costs

Preliminary information - subject to revision. Not for citation or distribution

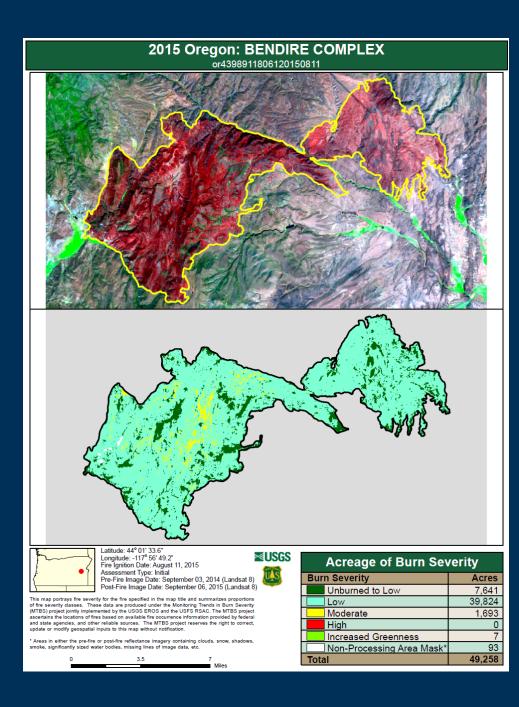

Source: Bureau of Land Management Handbook H-9238-1


Fires in sagebrush biome

~40% of federallymanaged land is shrub/scrub ecosystem

including ~70% of BLM-managed lands

≈USGS

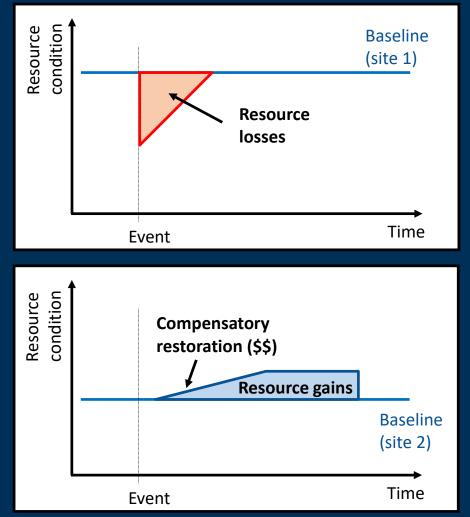


Two case study fires

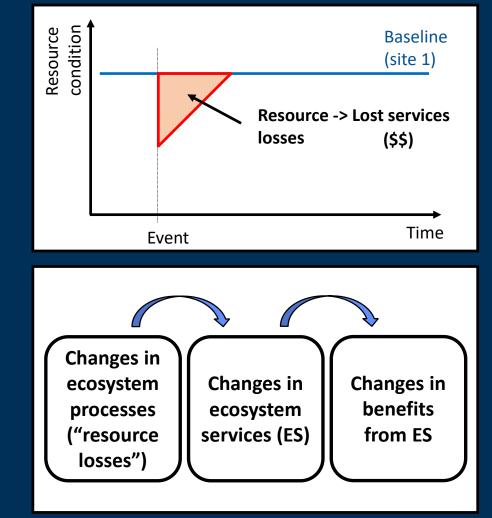
2015 Idaho: SODA id4311811696020150810 atitude: 43° 19' 08.4" **≥USGS** Longitude: -116° 51' 39.6' Acreage of Burn Severity Fire Ignition Date: August 10, 2015 Assessment Type: Initial Pre-Fire Image Date: July 29, 2015 (Landsat 8) Burn Severity Acres Post-Fire Image Date: August 22, 2015 (Landsat 7) 23,140 Unburned to Low This map portrays fire severity for the fire specified in the map title and summarizes proportions of fire severity 192,109 Low classes. These data are produced under the Monitoring Trends in Burn Seventy (MTBS) project jointly implemented by the USGS EROS and the USFS RSAC. The MTBS project ascertains the locations of fires based on available fire Moderate 38,446 occurrence information provided by federal and state agencies, and other reliable sources. The MTBS project Hiah 0 reserves the right to correct, update or modify geospatial inputs to this map without notification. 176 * Areas in either the pre-fire or post-fire reflectance imagery containing clouds, snow, shadows, smoke, significantly Increased Greenness sized water bodies, missing lines of image data, etc. Non-Processing Area Mask* 29,021

Total

282,891



Preliminary information - subject to revision. Not for citation or distribution


≈USGS

Two approaches to valuation

Equivalency analysis (HEA)

Ecosystem services (ES)

≥USGS

HEA: Precedent from USDA-Forest Service cases

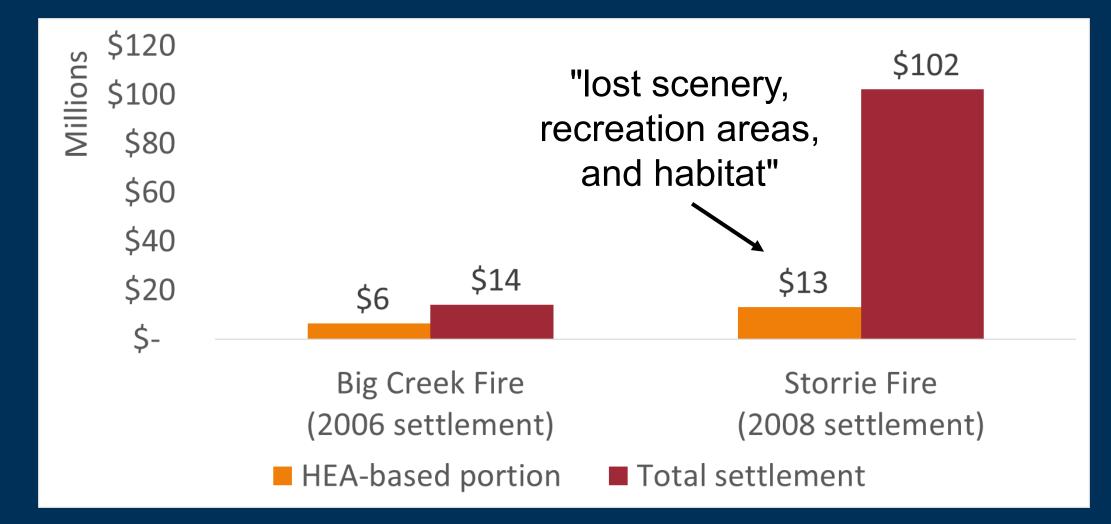
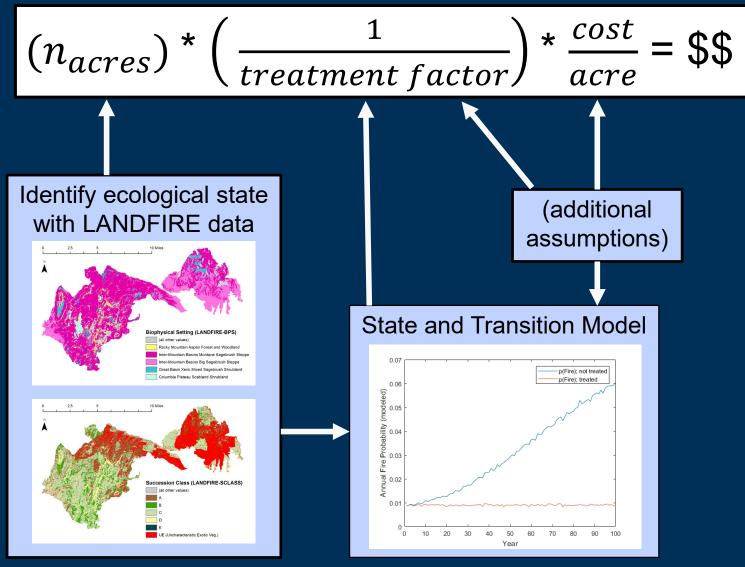
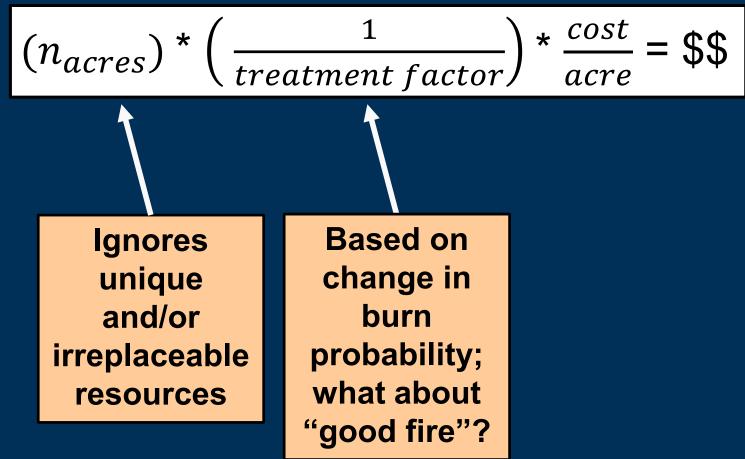



 Image: Second system

 Preliminary information - subject to revision. Not for citation or distribution

HEA: Approach



HEA: Results

$(n_{acres}) * \left(\frac{1}{tr}\right)$	1 eatmen	nt facto	$\left(\frac{1}{ar}\right) * \frac{c}{a}$	$\frac{ost}{cre} = 3$	\$\$	
Model Parameters						
Ecological State	MBS-1a	MBS-1b	MBS-3	WSS-1		
Large fire probability without treatment ^a	0.0330	0.0735	0.1100	0.0755		
Large fire probability with treatment ^a	0.0170	0.0170	0.0375	0.0090		
Cost of treatment ^b (2015 dollars)	\$ 21.20	\$ 49.46	\$ 179.02	\$ 21.20		
Compensatory treatment factor ^c (=V1/q2)	0.443	1.564	2.006	1.840		
and 1b, but assuming 100% effectiveness as a conservative assumption; ^c Calculated net present value of 60 years benefits based on Taylor et al. (2013) estimated treatment duration with 3% discount rate Soda Fire						
Ecological State	MBS-1a	MBS-1b	MBS-3	WSS-1	TOTAL	
V1 = q1 (i.e. acres burned)	48,946	15,205	46,258	155,403	265,812	
q2 (acres to treat for compensation)	110,534	9,724	23,054	84,439	227,751	
Resource damage (=q2*cost)	\$ 2,342,939	\$ 480,921	\$ 4,127,171	\$ 1,789,805	\$ 8,740,835	
Bendire Complex Fire						
Ecological State	MBS-1a	MBS-1b	MBS-3	WSS-1	TOTAL	
V1 = q1 (i.e. acres burned)	9,331	5,069	12,099	21,577	48,075	
q2 (acres to treat for compensation)	21,073	3,241	6,030	11,724	42,068	
Resource damage (=q2*cost)	\$ 446,681	\$ 160,319	\$ 1,079,429	\$ 248,503	\$ 1,934,932	

HEA: Main limitations

ES: Related efforts

CSIRO PUBLISHING www.publish.csiro.au/journals/ijwf

International Journal of Wildland Fire 2011, 20, 327-339

Accommodating non-market values in evaluation of wildfire management in the United States: challenges and opportunities

Tyron J. Venn^{A,C} and David E. Calkin^B

^ACollege of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA.
^BRocky Mountain Research Station, USDA Forest Service, Missoula, MT 59801, USA.
^CCorresponding author. Email: tyron.venn@eumontana.edu

Abstract. Forests in the United States generate many non-market benefits for society that can be enhanced and diminished by wildfire and wildfire management. The Federal Wildland Fire Management Policy (1995, updated 2001), and subsequent Guidance to the Implementation of that policy provided in 2009, require fire management policy inorities be set on the basis of values to be protected (including natural and cultural resources), costs of protection, and natural resource management objectives (including beneficial fire effects). Implementation of this policy is challenging because those charged with executing the policy have limited information about the value that society places on non-market goods and services at risk. This paper reviews the challenges of accommodating non-market values affected by wildfire in social cost-benefit analysis and proposes an economic research agendum to support more efficient management of wildfire in the United States.

Additional keywords: bushfire, wildfire economics, wildfire policy.

Introduction

According to Calkin et al. (2005), the late 1980s marked the commencement of an era of large wildfires in the western United States that have threatened lives, destroyed homes and stretched suppression resources thin. Annual suppression expenditures by the USDA Forest Service (cited henceforth as Forest Service) have increased in recent years and exceeded US\$1 billion in the fire seasons of 2000, 2002, 2003, 2006, 2007, 2008 and 2009 (USDA Forest Service, Rocky Mountain Research Station, national wildfire suppression expenditure unpubl. data, 2009). Several factors have contributed to the high level of suppression expenditures, including: fuel accumulation due to past successful fire suppression activities; a more complex firefighting environment due to private development in the wildland-urban interface (WUI); climate change; limited economic accountability among fire managers; and a fire management incentive system that makes fire managers more risk-averse than may be socially optimal (National Academy of Public Administration 2002; USDA Forest Service et al. 2003; Calkin et al. 2005; Maguire and Albright 2005; Running 2006; Westerling et al. 2006). The United States Federal Government is concerned that fire suppression resources are not being employed in an economically efficient manner and the Forest Service is under substantial pressure to reduce fire suppression expenditures (USDA OIG 2006).

Wildfire differs from other large natural disturbances on a landscape in that managers can plan for and manage wildfire wildfire risk framework described by Finney (2005) are

support tools must better accommodate non-market benefits and costs of wildfire, including the effects of fire on air quality, wildfife haita and recreation opportunities. Wildfire risk assessment models based on a quantitative wildfire risk framework described by Finney (2005) are

events to a greater degree than is possible with other events, such

as earthquakes, floods and hurricanes. Therefore, knowledge

about social values of resources at risk is helpful for setting

protection priorities. Economists and other analysts have developed price-based^A wildfire management decision-support tools

that aid the allocation of wildfire suppression resources to

minimise the sum of short-term direct pecuniary costs of

wildfire management, as well as damage to private property,

public infrastructure, timber and some non-market goods and

services. However, US federal wildfire policy recognises eco-

system health benefits of fire and that 'economically viable'

wildfire management must be based on the values to be

protected, including natural and cultural resources, costs of

protection and natural resource management objectives (USDI

guidance on the implementation of the policy emphasising that

'Wildland fire will be used to protect, maintain, and enhance

resources and, as nearly as possible, be allowed to function in its

natural ecological role' (FEC 2009, p. 11). To support federal

land management agency implementation of contemporary federal wildfire management policy, price-based decision-

et al. 2001, p. 22). In 2009, the Fire Executive Council published

^AIn a price-based approach, market or shadow prices are derived for all project outputs and inputs under consideration. Cost-benefit analysis is the classic example of a price-based approach.

0	IAV	TC	201	1
	174.9	¥ 1.	201	

10.1071/WF09095 1049-8001/11/030327

≥USGS

ES: Related efforts

CSIRO PUBLISHING

www.publish.csiro.au/journals/ijwf

International Journal of Wildland Fire 2011, 20, 327-339

Accommodating non-market values in evaluation of wildfire management in the United States: challenges and opportunities

Tyron J. Venn^{A,C} and David E. Calkin^B

^ACollege of Forestry and Conservation, The University of Montana, Missoula, MT 59812, USA. ^BRocky Mountain Research Station, USDA Forest Service, Missoula, MT 59801, USA. ^CCorresponding author. Email: tyron.venn@umontana.edu

Abstract. Forests in the United States generate many non-market benefits for society that can be enhanced and diminished by wildfire and wildfire management. The Federal Wildland Fire Management Policy (1995, updated 2001), and subsequent Guidance to the Implementation of that policy provided in 2009, require fire management priorities be set on the basis of values to be protected (including natural and cultural resources), costs of protection, and natural resource management objectives (including beneficial fire effects). Implementation of this policy is challenging because those charged with executing the policy have limited information about the value that society places on non-market goods and services at risk. This paper reviews the challenges of accommodating non-market values affected by wildfire in social cost-benefit analysis and proposes an economic research agendum to support more efficient management of wildfire in the United States.

Additional keywords: bushfire, wildfire economics, wildfire policy.

Introduction

According to Calkin et al. (2005), the late 1980s marked the commencement of an era of large wildfires in the western United States that have threatened lives, destroyed homes and stretched suppression resources thin. Annual suppression expenditures by the USDA Forest Service (cited henceforth as Forest Service) have increased in recent years and exceeded US\$1 billion in the fire seasons of 2000, 2002, 2003, 2006, 2007, 2008 and 2009 (USDA Forest Service, Rocky Mountain Research Station, national wildfire suppression expenditure unpubl. data, 2009). Several factors have contributed to the high level of suppression expenditures, including: fuel accumulation due to past successful fire suppression activities; a more complex firefighting environment due to private development in the wildland-urban interface (WUI); climate change; limited economic accountability among fire managers; and a fire management incentive system that makes fire managers more risk-averse than may be socially optimal (National Academy of Public Administration 2002; USDA Forest Service et al. 2003; Calkin et al. 2005; Maguire and Albright 2005; Running 2006; Westerling et al. 2006). The United States Federal Government is concerned that fire suppression resources are not being employed in an economically efficient manner and the Forest Service is under substantial pressure to reduce fire suppression expenditures (USDA OIG 2006).

Wildfire differs from other large natural disturbances on a landscape in that managers can plan for and manage wildfire

events to a greater degree than is possible with other events, such as earthquakes, floods and hurricanes. Therefore, knowledge about social values of resources at risk is helpful for setting protection priorities. Economists and other analysts have developed price-based^A wildfire management decision-support tools that aid the allocation of wildfire suppression resources to minimise the sum of short-term direct pecuniary costs of wildfire management, as well as damage to private property, public infrastructure, timber and some non-market goods and services. However, US federal wildfire policy recognises ecosystem health benefits of fire and that 'economically viable' wildfire management must be based on the values to be protected, including natural and cultural resources, costs of protection and natural resource management objectives (USDI et al. 2001, p. 22). In 2009, the Fire Executive Council published guidance on the implementation of the policy emphasising that 'Wildland fire will be used to protect, maintain, and enhance resources and, as nearly as possible, be allowed to function in its natural ecological role' (FEC 2009, p. 11). To support federal land management agency implementation of contemporary federal wildfire management policy, price-based decisionsupport tools must better accommodate non-market benefits and costs of wildfire, including the effects of fire on air quality, wildlife habitat and recreation opportunities.

Wildfire risk assessment models based on a quantitative wildfire risk framework described by Finney (2005) are

AIn a price-based approach, market or shadow prices are derived for all project outputs and inputs under consideration. Cost-benefit analysis is the classic example of a price-based approach.

C	IAV	NF	20	11	

≈USGS

10 1071/WE09095 1049-8001/11/030327

		TABLE 1	TOTAL ENVIRONMENTAL BENEFITS LOST TO THE RIM FIRE IN THE FIRST YEAR POST-FIRE			
		LAND COVER	Area (Acres)	DESCRIPTION	Low (\$/year)	High (\$/year)
		Grassland and Meadow	20,201	Includes annual and perennial grasslands that dominate major regions around coniferous forests	\$30,569,395	\$69,202,212
THE ECONOMIC IMPACT OF THE 2013 RIM FIRE ON NATURAL LANDS		Herbaceous Wetland	577	Includes wetlands dominated by herbaceous meadow vegetation; areas where total herbaceous wetland vegetation coverage is greater than 20%	\$515,158	\$20,284,851
		Shrub	31,923	Riparian areas alongside riverine and wetland regions; exists through various altitudes	\$541,959	\$37,247,933
ECONOMICS		Lake	447	Contains areas dominated by shrubs less than 5 meters tall. This class includes chaparral shrubs and mixed montane shrubs	\$93,926	\$2,877,038
		River	161	Includes areas of open water, generally with less than 25% cover of vegetation or soil	\$4,073	\$907,523
		Riparian	190	Includes stream and creek systems and sometimes areas of open water	\$47,071	\$325,824
Preliminary Assessment		Forest (Broad Leaf and Mixed)	32,213	Includes a mixture of aspen, blue oak woodlands, and montane hardwoods that occur sporadically throughout National Parks Service and Forest Service lands	\$5,098,191	\$284,804,356
		Forest (Coniferous)	168,941	Includes many conifer-dominated vegetation types such as Blue Oak- Foothill Pine, Closed-Come Pine- Cypress, Douglas Fir, Jeffrey Pine, Lodgepole Pine, Ponderosa Pine, Red Fir, Sierran Mixed Conifer, and Mixed Montane Hardwoods Conifers	\$63,147,300	\$320,363,902

\$736.013.639

\$100.017.074

LAND COVER	Ecosystem Service	Author(s) (Primary)	Minimum (\$/acre/year)	Maximum (\$/acre/year)
Shrub	Air Quality	Costanza, R., et al.	\$6.43	\$8.11
	Habitat and Biodiversity	Costanza, R., et al.	\$0.64	\$330.27
	Pollination	Costanza, R., et al.	\$1.37	\$6.89
	Recreation and Tourism	Bennett, R., et. al.	\$191.88	\$191.88
		Costanza, R., et al.	\$15.89	\$1,327.22

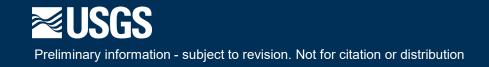
Total 254,654

ES: Available-data benefit transfer

Economic Benefits of Greater Sage-Grouse Conservation Measures

Final Report

June 30, 2016


Prepared for Bureau of Land Management, Socioeconomics Program Washington, DC

Prepared by Jonathan I. Hecht, ICF International J. David Ryder, ICF International T. Robert Fetter, Duke University

		Soda Fire		Bendire Complex Fire	
			Rough		Rough
	Rough estimate		estimate ES		estimate ES
Land cover type	\$/acre ^a (2015\$)	Acres	Damage	Acres	Damage
Grassland/Herbaceous	\$34.37	84,316	\$2,898,033	22,874	\$786,191
Shrub/Scrub	\$34.88	171,838	\$5,994,017	21,445	\$748 <i>,</i> 053
Mixed Forest	\$190.92	24,515	\$4,680,356	4,812	\$918,790
Total		280,669	\$13,572,406	49,131	\$2,453,035
2					

^aConstructed from data and results for air quality regulation, waste treatment services, biological control, and pollination as reported in Hecht et al. (2016)

- Simple benefit transfer plausible
 - BUT NOT RECOMMENDED
 - Severe limitations to underlying data

ES: Enumerated services

Ecosystem service category	Comments / limitations / needs
Carbon sequestration and storage	Most ecosystem C stored below ground, expect little net change from wildfire
Soil erosion and debris flows	Site specific, requires detailed modeling (soils, hydrology, weather, etc.)
Air quality impacts	Site specific, requires modeling population exposure
Recreation opportunities	Site specific, requires demand estimation (e.g. substitute site availability)
Grazing opportunities	Site specific, requires demand estimation (e.g. substitute site availability)
Habitat for native flora and fauna	Requires nonmarket values of species, impact of individual fire on survival probability
Cultural heritage	Very site specific

Overall: site specific, anywhere from negligible to immense

Preliminary information - subject to revision. Not for citation or distribution

SGS

Sagebrush ecosystem services are not well understood, and wildland fire's impact on benefits even less so.

However, resource damages clearly add up for large fires, and either method, though imperfect, finds substantial values.

Preliminary information - subject to revision. Not for citation or distribution

James Meldrum (jmeldrum@usgs.gov)